Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Prev Vet Med ; 223: 106100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198900

RESUMO

Grazing equids are constantly exposed to three clinically important gastrointestinal parasites (small strongyles/cyathostomins, Anoplocephala spp. and Parascaris spp.). Knowledge of the local seasonal dynamic of these parasitic infections is important for constructing a sustainable parasite control program with a rational number of anthelmintic treatments. However, studies describing these patterns are sparse in France. In this context, a two-year study was carried out to assess i) the seasonal dynamic and variability of strongyle faecal egg counts (FEC) and infective larvae (L3) counts on pastures, and ii) the prevalence of Anoplocephala spp. and Parascaris spp. and the dynamic evolution of their presence. During 2021 and 2022 grazing seasons, monthly individual faecal egg counts (FEC) and diarrhea scores (DS) were determined on 428 equids divided into 33 groups. A monthly body condition score (BCS) was also attributed to animals ≥3 years old and a monthly bodyweight was estimated for each animal <3 years old. At the group level, the strongyle L3 counts on grazed pastures were carried out at least in spring, summer and autumn. Eggs of strongyles were observed in 97% of equids. In 64% of the groups, the peaks of FEC were noted in September and October. At the individual level, the maximum strongyle FEC was related to age, group of breeds, number of grazed plots and number of anthelmintic treatments. No negative association was observed between strongyle FEC and BCS or average daily weight gain. In the pastures, cyathostomin larvae were found almost exclusively. Over the two years, the peaks of cyathostomin L3 counts occurred in 87% of the groups between September and November and ranged from 635 to 87,500 L3 kg-1 dry herbage. The variability of the maximum cyathostomin L3 count in each group was explained by the year and the number of grazed plots. Eggs of Anoplocephala spp. were observed in 12% of equids. Eggs of Parascaris spp. were noted in 34% of one year-old animals, 9% of two years-olds and 2% of olders. Anoplocephala spp. and Parascaris spp. eggs were observed every month with a peak in the percentage of shedders in groups in October for Anoplocephala spp. and May-June for Parascaris spp.This study highlights the prevalence of each parasite, the variability in cyathostomin egg excretion and L3 counts amongst groups and individuals and the factors involved in this variation These local epidemiological data will help us to re-think a newer strategy against these parasites.


Assuntos
Anti-Helmínticos , Ascaridoidea , Doenças dos Cavalos , Enteropatias Parasitárias , Parasitos , Humanos , Cavalos , Animais , Doenças dos Cavalos/parasitologia , Estações do Ano , Prevalência , Contagem de Ovos de Parasitas/veterinária , Enteropatias Parasitárias/epidemiologia , Enteropatias Parasitárias/veterinária , Anti-Helmínticos/uso terapêutico , Fezes/parasitologia , França/epidemiologia
2.
Vet Sci ; 10(10)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37888544

RESUMO

Dourine is a sexually transmitted parasitic disease affecting equids. Its causative agent is referred to as Trypanosoma equiperdum and the prescribed serodiagnosis method is the complement fixation test (CFT). In the context of our European Reference Laboratory mandate for equine diseases (excluding African horse sickness), we organised dourine CFT inter-laboratory proficiency tests (ILPTs) in 2015, 2018 and 2022 to evaluate the performance of the European Union network of National Reference Laboratories (NRLs) for dourine. ILPT panels were composed of horse sera with or without antibodies against Trypanosoma spp. originating from non-infected, immunised or experimentally infected horses. Twenty-two NRLs participated in at least one of the three sessions. In 2015, 2018 and 2022, the percentage of laboratories obtaining 100% of the expected results was 57, 90 and 80, respectively. These dourine CFT ILPTs showed the benefits of standardising the method's detection limit and underlined the constant need to evaluate NRLs to improve the network's performance. These results also argue in favour of the need for a representative bio-bank to improve the representativeness of ILPT samples and to allow the adoption of alternative serological methods for international surveillance of dourine.

3.
Parasit Vectors ; 15(1): 235, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761373

RESUMO

Reliable diagnostic tools are needed to choose the appropriate treatment and proper control measures for animal trypanosomoses, some of which are pathogenic. Trypanosoma cruzi, for example, is responsible for Chagas disease in Latin America. Similarly, pathogenic animal trypanosomoses of African origin (ATAO), including a variety of Trypanosoma species and subspecies, are currently found in Africa, Latin America and Asia. ATAO limit global livestock productivity and impact food security and the welfare of domestic animals. This review focusses on implementing previously reviewed diagnostic methods, in a complex epizootiological scenario, by critically assessing diagnostic results at the individual or herd level. In most cases, a single diagnostic method applied at a given time does not unequivocally identify the various parasitological and disease statuses of a host. These include "non-infected", "asymptomatic carrier", "sick infected", "cured/not cured" and/or "multi-infected". The diversity of hosts affected by these animal trypanosomoses and their vectors (or other routes of transmission) is such that integrative, diachronic approaches are needed that combine: (i) parasite detection, (ii) DNA, RNA or antigen detection and (iii) antibody detection, along with epizootiological information. The specificity of antibody detection tests is restricted to the genus or subgenus due to cross-reactivity with other Trypanosoma spp. and Trypanosomatidae, but sensitivity is high. The DNA-based methods implemented over the last three decades have yielded higher specificity and sensitivity for active infection detection in hosts and vectors. However, no single diagnostic method can detect all active infections and/or trypanosome species or subspecies. The proposed integrative approach will improve the prevention, surveillance and monitoring of animal trypanosomoses with the available diagnostic tools. However, further developments are required to address specific gaps in diagnostic methods and the sustainable control or elimination of these diseases.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Trypanosoma , Tripanossomíase , África/epidemiologia , Animais , Animais Domésticos , Trypanosoma/genética , Tripanossomíase/diagnóstico , Tripanossomíase/epidemiologia , Tripanossomíase/veterinária
4.
Sci Rep ; 12(1): 1308, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079068

RESUMO

Trypanozoon infections in equids are caused by three parasite species in the Trypanozoon subgenus: Trypanosoma equiperdum, T. brucei and T. evansi. They are respectively responsible for infectious diseases dourine, nagana and surra. Due to the threat that Trypanozoon infection represents for international horse trading, accurate diagnostic tests are crucial. Current tests suffer from poor sensitivity and specificity, due in the first case to the transient presence of parasites in the blood and in the second, to antigenic cross-reactivity among Trypanozoon subspecies. This study was designed to develop a microsphere-based immunoassay for diagnosing equine trypanosomosis. We tested beads coated with eight Trypanosoma spp. recombinant antigens: enolase, GM6, PFR1, PFR2, ISG65, VSGat, RoTat1.2 and JN2118HU. Of these, GM6 was identified as the best candidate for the serological diagnosis of Trypanozoon infections in equids. Using a receiver operating characteristic (ROC) analysis on 349 equine sera, anti-GM6 antibodies were detected with an AUC value of 0.994 offering a sensitivity of 97.9% and a specificity of 96.0%. Our findings show that the GM6 antigen is a good target for diagnosing equine trypanosomosis using a microsphere-based immunoassay. This promising assay could be a useful alternative to the official diagnostic tool for equine trypanosomosis.


Assuntos
Doenças dos Cavalos/diagnóstico , Cavalos/parasitologia , Microesferas , Testes Sorológicos/métodos , Trypanosoma/imunologia , Tripanossomíase/diagnóstico , Tripanossomíase/veterinária , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Área Sob a Curva , Ensaio de Imunoadsorção Enzimática/métodos , Doenças dos Cavalos/parasitologia , Cavalos/sangue , Curva ROC , Proteínas Recombinantes/imunologia , Tripanossomíase/sangue , Tripanossomíase/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia
5.
Microb Genom ; 7(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34397347

RESUMO

Trypanosoma brucei evansi and T. brucei equiperdum are animal infective trypanosomes conventionally classified by their clinical disease presentation, mode of transmission, host range, kinetoplast DNA (kDNA) composition and geographical distribution. Unlike other members of the subgenus Trypanozoon, they are non-tsetse transmitted and predominantly morphologically uniform (monomorphic) in their mammalian host. Their classification as independent species or subspecies has been long debated and genomic studies have found that isolates within T. brucei evansi and T. brucei equiperdum have polyphyletic origins. Since current taxonomy does not fully acknowledge these polyphyletic relationships, we re-analysed publicly available genomic data to carefully define each clade of monomorphic trypanosome. This allowed us to identify, and account for, lineage-specific variation. We included a recently published isolate, IVM-t1, which was originally isolated from the genital mucosa of a horse with dourine and typed as T. equiperdum. Our analyses corroborate previous studies in identifying at least four distinct monomorphic T. brucei clades. We also found clear lineage-specific variation in the selection efficacy and heterozygosity of the monomorphic lineages, supporting their distinct evolutionary histories. The inferred evolutionary position of IVM-t1 suggests its reassignment to the T. brucei evansi type B clade, challenging the relationship between the Trypanozoon species, the infected host, mode of transmission and the associated pathological phenotype. The analysis of IVM-t1 also provides, to our knowledge, the first evidence of the expansion of T. brucei evansi type B, or a fifth monomorphic lineage represented by IVM-t1, outside of Africa, with important possible implications for disease diagnosis.


Assuntos
Filogenia , Trypanosoma/classificação , Trypanosoma/genética , Tripanossomíase/parasitologia , África , Animais , Cromossomos , DNA de Cinetoplasto/genética , Genótipo , Cavalos , Polimorfismo de Nucleotídeo Único , Trypanosoma/isolamento & purificação , Trypanosoma brucei brucei/classificação , Trypanosoma brucei brucei/genética , Tripanossomíase/veterinária
6.
Vet Parasitol Reg Stud Reports ; 24: 100566, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34024382

RESUMO

Northern Argentina hosts equine populations living under preserved natural areas and extensive breeding conditions, with limited access to veterinary care. Horses can be in contact with i) wildlife considered to be a potential reservoir of horse pathogens (e.g. capybara, coatis and pampas deer) and/or ii) potential disease vectors such as ticks, horse flies, Culicidae and vampire bats. In this context, the aim of this study was to assess the exposure of horses from a herd in northern Argentina to different vector-borne pathogens. Serum samples were collected from 20 horses on a farm in Chaco province. Most of these horses were in good health, but a few showed clinical signs such as fever, neurological signs or emaciation. Potential vectors (ticks, horse flies and Culicidae) were present and a fresh bite of a vampire bat (Desmodus rotundus) was observed on one horse. This serological survey revealed that 100% (20/20) were positive for equine infectious anaemia (EIA), 100% (18/18) for West Nile fever (WNF), 53% (10/19) for surra and 45% (9/20) for equine piroplasmosis (Babesia equi). Among these horses, four were found seropositive for all four infections. On the other hand, all the tested horses were seronegative for equine viral arteritis (EVA), Eastern equine encephalomyelitis (EEE), Venezuelan equine encephalitis (VEE), Western equine encephalomyelitis (WEE) and glanders. The data from this survey conducted on a small number of animals illustrate the need for an effective application of surveillance programmes and control measures for equine diseases in northern Argentina and constitute, to our knowledge, the first report of horses simultaneously seropositive for EIA, WNF, surra and equine piroplasmosis.


Assuntos
Babesiose , Cervos , Anemia Infecciosa Equina , Febre do Nilo Ocidental , Animais , Argentina/epidemiologia , Babesiose/epidemiologia , Cavalos , Mosquitos Vetores , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária
7.
Transbound Emerg Dis ; 67(6): 3061-3068, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32687668

RESUMO

Equine trypanosomosis comprises different parasitic diseases caused by protozoa of the subgenus Trypanozoon: Trypanosoma equiperdum (causative agent of dourine), Trypanosoma brucei (nagana) and Trypanosoma evansi (surra). Due to the absence of a vaccine and the lack of efficacy of the few available drugs, these diseases represent a major health and economic problem for international equine trade. Development of affordable, sensitive and specific diagnostic tests is therefore crucial to ensure the control of these diseases. Recently, it has been shown that a small RNA derived from the 7SL gene (7SL-sRNA) is produced in high concentrations in sera of cattle infected with Trypanosoma congolense, Trypanosoma vivax and Trypanosoma brucei. Our objective was to determine whether 7SL-sRNA could serve as a marker of active infection in equids experimentally infected with Trypanosoma equiperdum by analysing the sensitivity, specificity and stability of the 7SL-sRNA. Using a two-step RT-qPCR, we were able to detect the presence of 7SL-sRNA between 2 and 7 days post-infection, whereas seroconversion was detected by complement fixation test between 5 and 14 days post-infection. There was a rapid loss of 7SL-sRNA signal from the blood of infected animals one day post-trypanocide treatment. The 7SL-sRNA RT-qPCR allowed an early detection of a treatment failure revealed by glucocorticoid-induced immunosuppression. In addition, the 7SL-sRNA remains detectable in positive sera after 7 days of storage at either 4°C, room temperature or 30°C, suggesting that there is no need to refrigerate serum samples before analysis. Our findings demonstrate continual detection of 7SL-sRNA over an extended period of experimental infection, with signals detected more than six weeks after inoculation. The detection of a strong and consistent 7SL-sRNA signal even during subpatent parasitemia and the early detection of treatment failure highlight the very promising nature of this new diagnostic method.


Assuntos
Mal do Coito (Veterinária)/diagnóstico , Doenças dos Cavalos/diagnóstico , RNA de Protozoário/isolamento & purificação , RNA Citoplasmático Pequeno/isolamento & purificação , Partícula de Reconhecimento de Sinal/isolamento & purificação , Trypanosoma/isolamento & purificação , Animais , Biomarcadores/análise , Testes de Fixação de Complemento/veterinária , Mal do Coito (Veterinária)/parasitologia , Feminino , França , Doenças dos Cavalos/parasitologia , Cavalos , Reação em Cadeia da Polimerase/veterinária , Tripanossomíase/diagnóstico , Tripanossomíase/parasitologia
8.
Parasit Vectors ; 12(1): 234, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092285

RESUMO

Equine trypanosomosis is a complex of infectious diseases called dourine, nagana and surra. It is caused by several species of the genus Trypanosoma that are transmitted cyclically by tsetse flies, mechanically by other haematophagous flies, or sexually. Trypanosoma congolense (subgenus Nannomonas) and T. vivax (subgenus Dutonella) are genetically and morphologically distinct from T. brucei, T. equiperdum and T. evansi (subgenus Trypanozoon). It remains controversial whether the three latter taxa should be considered distinct species. Recent outbreaks of surra and dourine in Europe illustrate the risk and consequences of importation of equine trypanosomosis with infected animals into non-endemic countries. Knowledge on the epidemiological situation is fragmentary since many endemic countries do not report the diseases to the World Organisation for Animal Health, OIE. Other major obstacles to the control of equine trypanosomosis are the lack of vaccines, the inability of drugs to cure the neurological stage of the disease, the inconsistent case definition and the limitations of current diagnostics. Especially in view of the ever-increasing movement of horses around the globe, there is not only the obvious need for reliable curative and prophylactic drugs but also for accurate diagnostic tests and algorithms. Unfortunately, clinical signs are not pathognomonic, parasitological tests are not sufficiently sensitive, serological tests miss sensitivity or specificity, and molecular tests cannot distinguish the taxa within the Trypanozoon subgenus. To address the limitations of the current diagnostics for equine trypanosomosis, we recommend studies into improved molecular and serological tests with the highest possible sensitivity and specificity. We realise that this is an ambitious goal, but it is dictated by needs at the point of care. However, depending on available treatment options, it may not always be necessary to identify which trypanosome taxon is responsible for a given infection.


Assuntos
Mal do Coito (Veterinária)/diagnóstico , Doenças dos Cavalos/diagnóstico , Tripanossomíase/veterinária , Animais , Ensaio de Imunoadsorção Enzimática , Doenças dos Cavalos/parasitologia , Cavalos , Técnicas de Diagnóstico Molecular/veterinária , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Testes Sorológicos , Trypanosoma/classificação , Trypanosoma/patogenicidade , Trypanosoma brucei brucei/patogenicidade , Trypanosoma congolense/patogenicidade , Trypanosoma vivax/patogenicidade , Tripanossomíase/diagnóstico
9.
Vet Parasitol ; 264: 47-51, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30503091

RESUMO

The aim of this study was to evaluate the ability of melarsomine hydrochloride (Cymelarsan®) to cure horses suffering from a nervous form of dourine, a sexually-transmitted disease caused by Trypanosoma equiperdum. The recently described experimental model for assessing drug efficacy against horse trypanosomosis allowed us to obtain eight horses (Welsh pony mares) infected by T. equiperdum with parasites in their cerebrospinal fluid. The Cymelarsan® treatment evaluated consisted of the daily administration of 0.5 mg/kg of Cymelarsan® over 7 days. Two control horses remained untreated, three horses received the treatment 36 days p.i. and three horses received the treatment 16 days p.i. Following treatment, we observed parasite clearance in blood, stabilization of rectal temperature and a relative improvement in the mean packed cell volume levels for all treated horses. However, live parasites were later observed again in the CSF of all treated horses. Our results indicate the inability of Cymelarsan® to reach Trypanozoon located in the central nervous system of infected horses and thus discourage the use of Cymelarsan® to treat animals suffering from a nervous form of dourine.


Assuntos
Arsenicais/uso terapêutico , Líquido Cefalorraquidiano/parasitologia , Mal do Coito (Veterinária)/líquido cefalorraquidiano , Mal do Coito (Veterinária)/tratamento farmacológico , Doenças dos Cavalos/líquido cefalorraquidiano , Doenças dos Cavalos/tratamento farmacológico , Animais , Arsenicais/normas , Feminino , Doenças dos Cavalos/parasitologia , Cavalos/líquido cefalorraquidiano , Cavalos/parasitologia , Falha de Tratamento , Trypanosoma/fisiologia
10.
Vet Parasitol ; 263: 27-33, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389021

RESUMO

Trypanosoma equiperdum, the causative agent of dourine, may affect the central nervous system, leading to neurological signs in infected horses. This location protects the parasite from most (if not all) existing chemotherapies. In this context, the OIE terrestrial code considers dourine as a non-treatable disease and imposes a stamping-out policy for affected animals before a country may achieve its dourine-free status. The use of practices as drastic as euthanasia remains controversial, but the lack of a suitable tool for studying a treatment's efficacy against dourine hampers the development of an alternative strategy for dourine infection management. The present study reports on the development of an experimental infection model for assessing drug efficacy against the nervous form of dourine. The model combines the infection of horses by Trypanosoma equiperdum and the search for trypanosomes in the cerebrospinal fluid (CSF) through an ultrasound-guided cervical sampling protocol. After a development phase involving four horses, we established an infection model that consists of inoculating 5 × 104T. equiperdum OVI parasites intravenously into adult Welsh mares (Equus caballus). To evaluate its efficacy, eight horses were infected according to this model. In all these animals, parasites were observed in the blood at 2 days post-inoculation (p.i.) and in CSF (12.5 ± 1.6 days p.i.) and seroconversion was detected (8.25 ± 0.5 days p.i.). All eight animals also developed fever (rectal temperature > 39 °C), low hematocrit (< 27%), and ventral edema (7.9 ± 2.0 days p.i.), together with other inconstant clinical signs such as edema of the vulva (six out of eight horses) or cutaneous plaques (three out of eight horses). This model provides a robust infection protocol that induces an acute trypanosome infection and that allows parasites to be detected in the CSF of infected horses within a period of time compatible with animal experimentation constraints. We conclude that this model constitutes a suitable tool for analyzing the efficacy of anti-Trypanosoma drugs and vaccines.


Assuntos
Mal do Coito (Veterinária)/tratamento farmacológico , Doenças dos Cavalos/tratamento farmacológico , Cavalos/parasitologia , Trypanosoma/efeitos dos fármacos , Anemia , Animais , Anticorpos Antiprotozoários/sangue , Modelos Animais de Doenças , Mal do Coito (Veterinária)/líquido cefalorraquidiano , Mal do Coito (Veterinária)/parasitologia , Avaliação de Medicamentos , Feminino , Doenças dos Cavalos/parasitologia , Trypanosoma/isolamento & purificação
11.
Vet Microbiol ; 210: 64-70, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29103698

RESUMO

Rhodococcus equi causes pulmonary and extrapulmonary infections in animals and humans, with endemic situations and significant young foal mortality in stud farms worldwide. Despite its economic impact in the horse-breeding industry, the broad geographic and host distribution, global diversity and population structure of R. equi remain poorly characterised. In this context, we developed a multilocus sequence typing (MLST) scheme using 89 clinical and environmental R. equi of various origins and eight Rhodococcus sp. Data can be accessed at http://pubmlst.org/rhodococcus/. A clonal R. equi population was observed with 16 out of 37 sequence types (STs) grouped into six clonal complexes (CC) based on single-locus variants. One of the six CCs (CC3) is not host-specific, suggesting potential exchanges between different R. equi reservoirs. Most of the virulent equine R. equi CCs/unlinked STs were plasmid-type-specific. Despite this, marked genetic variability with the circulation of multiple R. equi genotypes was generally observed even within the same animal. Focusing on outbreaks, data indicated (i) the potential contagious transmission of R. equi during the 2012-Mayotte equine outbreak because of the poor genotype diversity of clinical strains; (ii) a potential porcine outbreak among the 30 Belgian farms investigated in 2013. This first Rhodococcus equi MLST is a powerful tool for further epidemiological investigations and population biology studies of R. equi isolates.


Assuntos
Infecções por Actinomycetales/veterinária , Doenças dos Cavalos/microbiologia , Tipagem de Sequências Multilocus/veterinária , Rhodococcus equi/classificação , Infecções por Actinomycetales/epidemiologia , Infecções por Actinomycetales/microbiologia , Alelos , Animais , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana/métodos , Técnicas de Tipagem Bacteriana/veterinária , Genes Essenciais/genética , Variação Genética , Genótipo , Doenças dos Cavalos/epidemiologia , Cavalos , Tipagem de Sequências Multilocus/métodos , Plasmídeos/genética , Rhodococcus equi/genética
12.
J Genomics ; 5: 1-3, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28138343

RESUMO

Trypanosoma equiperdum is the causative agent of dourine, a sexually-transmitted infection of horses. This parasite belongs to the subgenus Trypanozoon that also includes the agent of sleeping sickness (Trypanosoma brucei) and surra (Trypanosoma evansi). We herein report the genome sequence of a T. equiperdum strain OVI, isolated from a horse in South-Africa in 1976. This is the first genome sequence of the T. equiperdum species, and its availability will provide important insights for future studies on genetic classification of the subgenus Trypanozoon.

13.
Genome Announc ; 2(6)2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25428969

RESUMO

Taylorella equigenitalis is the causative agent of contagious equine metritis (CEM), a sexually transmitted infection of horses. We herein report the genome sequence of T. equigenitalis strain MCE529, isolated in 2009 from the urethral fossa of a 15-year-old Belgian Warmblood horse in France.

14.
BMC Microbiol ; 14: 69, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24641089

RESUMO

BACKGROUND: Taylorella equigenitalis is the causative agent of contagious equine metritis, a sexually-transmitted infection of Equidae characterised in infected mares by abundant mucopurulent vaginal discharge and a variable degree of vaginitis, cervicitis or endometritis, usually resulting in temporary infertility. The second species of the Taylorella genus, Taylorella asinigenitalis, is considered non-pathogenic, although mares experimentally infected with this bacterium can develop clinical signs of endometritis. To date, little is understood about the basic molecular virulence and persistence mechanisms employed by the Taylorella species. To clarify these points, we investigated whether the host-pathogen interaction model Acanthamoeba castellanii was a suitable model for studying taylorellae. RESULTS: We herein demonstrate that both species of the Taylorella genus are internalised by a mechanism involving the phagocytic capacity of the amoeba and are able to survive for at least one week inside the amoeba. During this one-week incubation period, taylorellae concentrations remain strikingly constant and no overt toxicity to amoeba cells was observed. CONCLUSIONS: This study provides the first evidence of the capacity of taylorellae to survive in a natural environment other than the mammalian genital tract, and shows that the alternative infection model, A. castellanii, constitutes a relevant alternative system to assess host-pathogen interactions of taylorellae. The survival of taylorellae inside the potential environmental reservoir A. castellanii brings new insight, fostering a broader understanding of taylorellae biology and its potential natural ecological niche.


Assuntos
Acanthamoeba castellanii/microbiologia , Viabilidade Microbiana , Fagocitose , Taylorella/fisiologia , Acanthamoeba castellanii/fisiologia
15.
Curr Microbiol ; 68(3): 352-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24170270

RESUMO

Lysozyme is an important and widespread component of the innate immune response that constitutes the first line of defense against bacterial pathogens. The bactericidal effect of this enzyme relies on its capacity to hydrolyze the bacterial cell wall and also on a nonenzymatic mechanism involving its cationic antimicrobial peptide (CAMP) properties, which leads to membrane permeabilization. In this paper, we report our findings on the lysozyme resistance ability of Rhodococcus equi, a pulmonary pathogen of young foals and, more recently, of immunocompromised patients, whose pathogenic capacity is conferred by a large virulence plasmid. Our results show that (i) R. equi can be considered to be moderately resistant to lysozyme, (ii) the activity of lysozyme largely depends on its muramidase action rather than on its CAMP activity, and (iii) the virulence plasmid confers part of its lysozyme resistance capacity to R. equi. This study is the first one to demonstrate the influence of the virulence plasmid on the stress resistance capacity of R. equi and improves our understanding of the mechanisms enabling R. equi to resist the host defenses.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Farmacorresistência Bacteriana , Muramidase/metabolismo , Rhodococcus equi/efeitos dos fármacos , Genes Bacterianos , Plasmídeos , Rhodococcus equi/genética
16.
Vet Microbiol ; 167(3-4): 609-18, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24139720

RESUMO

We describe here the development of a multilocus sequence typing (MLST) scheme for Taylorella equigenitalis, the causative agent of contagious equine metritis (CEM), and Taylorella asinigenitalis, a nonpathogenic bacterium. MLST was performed on a set of 163 strains collected in several countries over 35 years (1977-2012). The MLST data were analyzed using START2, MEGA 5.05 and eBURST, and can be accessed at http://pubmlst.org/taylorella/. Our results revealed a clonal population with 39 sequence types (ST) and no common ST between the two Taylorella species. The eBURST analysis grouped the 27 T. equigenitalis STs into four clonal complexes (CC1-4) and five unlinked STs. The 12 T. asinigenitalis STs were grouped into three clonal complexes (CC5-7) and five unlinked STs, among which CC1 (68.1% of the 113 T. equigenitalis) and CC5 (58.0% of the 50 T. asinigenitalis) were dominants. The CC1, still in circulation in France, contains isolates from the first CEM outbreaks that simultaneously emerged in several countries in the late 1970s. The emergence in different countries (e.g. France, Japan, and United Arab Emirates) of STs without any genetic relationship to CC1 suggests the existence of a natural worldwide reservoir that remains to be identified. T. asinigenitalis appears to behave same way since the American, Swedish and French isolates have unrelated STs. This first Taylorella sp. MLST is a powerful tool for further epidemiological investigations and population biology studies of the Taylorella genus.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Infecções por Bactérias Gram-Negativas/veterinária , Doenças dos Cavalos/microbiologia , Tipagem de Sequências Multilocus/veterinária , Taylorella/classificação , Taylorella/genética , Animais , Feminino , Genes Bacterianos/genética , Variação Genética , Infecções por Bactérias Gram-Negativas/microbiologia , Cavalos/genética , Masculino , Tipagem Molecular , Filogenia , Taylorella/isolamento & purificação , Taylorella equigenitalis/classificação , Taylorella equigenitalis/genética , Taylorella equigenitalis/isolamento & purificação
17.
J Bacteriol ; 194(22): 6066-73, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961856

RESUMO

Lysozyme is a key component of the innate immune response in humans that provides a first line of defense against microbes. The bactericidal effect of lysozyme relies both on the cell wall lytic activity of this enzyme and on a cationic antimicrobial peptide activity that leads to membrane permeabilization. Among Gram-positive bacteria, the opportunistic pathogen Enterococcus faecalis has been shown to be extremely resistant to lysozyme. This unusual resistance is explained partly by peptidoglycan O-acetylation, which inhibits the enzymatic activity of lysozyme, and partly by d-alanylation of teichoic acids, which is likely to inhibit binding of lysozyme to the bacterial cell wall. Surprisingly, combined mutations abolishing both peptidoglycan O-acetylation and teichoic acid alanylation are not sufficient to confer lysozyme susceptibility. In this work, we identify another mechanism involved in E. faecalis lysozyme resistance. We show that exposure to lysozyme triggers the expression of EF1843, a protein that is not detected under normal growth conditions. Analysis of peptidoglycan structure from strains with EF1843 loss- and gain-of-function mutations, together with in vitro assays using recombinant protein, showed that EF1843 is a peptidoglycan N-acetylglucosamine deacetylase. EF1843-mediated peptidoglycan deacetylation was shown to contribute to lysozyme resistance by inhibiting both lysozyme enzymatic activity and, to a lesser extent, lysozyme cationic antimicrobial activity. Finally, EF1843 mutation was shown to reduce the ability of E. faecalis to cause lethality in the Galleria mellonella infection model. Taken together, our results reveal that peptidoglycan deacetylation is a component of the arsenal that enables E. faecalis to thrive inside mammalian hosts, as both a commensal and a pathogen.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Enterococcus faecalis/enzimologia , Enterococcus faecalis/patogenicidade , Regulação Bacteriana da Expressão Gênica/fisiologia , Amidoidrolases/genética , Animais , Proteínas de Bactérias/genética , DNA Bacteriano , Regulação Enzimológica da Expressão Gênica/fisiologia , Larva/microbiologia , Mariposas/microbiologia , Muramidase , Mutação , Plasmídeos , Virulência
18.
PLoS One ; 7(8): e42396, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22879963

RESUMO

Rhodococcus equi is one of the most widespread causes of disease in foals aged from 1 to 6 months. R. equi possesses antioxidant defense mechanisms to protect it from reactive oxygen metabolites such as hydrogen peroxide (H(2)O(2)) generated during the respiratory burst of phagocytic cells. These defense mechanisms include enzymes such as catalase, which detoxify hydrogen peroxide. Recently, an analysis of the R. equi 103 genome sequence revealed the presence of four potential catalase genes. We first constructed ΔkatA-, ΔkatB-, ΔkatC-and ΔkatD-deficient mutants to study the ability of R. equi to survive exposure to H(2)O(2)in vitro and within mouse peritoneal macrophages. Results showed that ΔkatA and, to a lesser extent ΔkatC, were affected by 80 mM H(2)O(2). Moreover, katA deletion seems to significantly affect the ability of R. equi to survive within murine macrophages. We finally investigated the expression of the four catalases in response to H(2)O(2) assays with a real time PCR technique. Results showed that katA is overexpressed 367.9 times (± 122.6) in response to exposure to 50 mM of H(2)O(2) added in the stationary phase, and 3.11 times (± 0.59) when treatment was administered in the exponential phase. In untreated bacteria, katB, katC and katD were overexpressed from 4.3 to 17.5 times in the stationary compared to the exponential phase. Taken together, our results show that KatA is the major catalase involved in the extreme H(2)O(2) resistance capability of R. equi.


Assuntos
Catalase/genética , Genes Bacterianos/genética , Peróxido de Hidrogênio/farmacologia , Rhodococcus equi/efeitos dos fármacos , Rhodococcus equi/genética , Animais , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana/efeitos dos fármacos , Filogenia , Rhodococcus equi/enzimologia , Rhodococcus equi/crescimento & desenvolvimento
19.
PLoS One ; 7(1): e29953, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22235352

RESUMO

The Taylorella genus comprises two species: Taylorella equigenitalis, which causes contagious equine metritis, and Taylorella asinigenitalis, a closely-related species mainly found in donkeys. We herein report on the first genome sequence of T. asinigenitalis, analyzing and comparing it with the recently-sequenced T. equigenitalis genome. The T. asinigenitalis genome contains a single circular chromosome of 1,638,559 bp with a 38.3% GC content and 1,534 coding sequences (CDS). While 212 CDSs were T. asinigenitalis-specific, 1,322 had orthologs in T. equigenitalis. Two hundred and thirty-four T. equigenitalis CDSs had no orthologs in T. asinigenitalis. Analysis of the basic nutrition metabolism of both Taylorella species showed that malate, glutamate and alpha-ketoglutarate may be their main carbon and energy sources. For both species, we identified four different secretion systems and several proteins potentially involved in binding and colonization of host cells, suggesting a strong potential for interaction with their host. T. equigenitalis seems better-equipped than T. asinigenitalis in terms of virulence since we identified numerous proteins potentially involved in pathogenicity, including hemagluttinin-related proteins, a type IV secretion system, TonB-dependent lactoferrin and transferrin receptors, and YadA and Hep_Hag domains containing proteins. This is the first molecular characterization of Taylorella genus members, and the first molecular identification of factors potentially involved in T. asinigenitalis and T. equigenitalis pathogenicity and host colonization. This study facilitates a genetic understanding of growth phenotypes, animal host preference and pathogenic capacity, paving the way for future functional investigations into this largely unknown genus.


Assuntos
Genoma Bacteriano/genética , Genômica/métodos , Taylorella/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia/classificação , Burkholderia/genética , Carbono/metabolismo , Estresse Oxidativo/genética , Filogenia , Alinhamento de Sequência , Especificidade da Espécie , Taylorella/metabolismo , Fatores de Virulência/genética
20.
J Bacteriol ; 193(7): 1785, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21278298

RESUMO

Taylorella equigenitalis is the causative agent of contagious equine metritis (CEM), a sexually transmitted infection of horses. We herein report the genome sequence of T. equigenitalis strain MCE9, isolated in 2005 from the urethral fossa of a 4-year-old stallion in France.


Assuntos
Endometrite/veterinária , Genoma Bacteriano , Doenças dos Cavalos/microbiologia , Taylorella equigenitalis/classificação , Taylorella equigenitalis/genética , Animais , Endometrite/microbiologia , Feminino , Cavalos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA